

Enhancing Career Opportunities in Management Studies: The Role of SWAYAM in Aligning Higher Education with Industry Requirements

¹Anand Guled, ²Dr. Akshay A, ³Dr. C. N. Udaya Shankar, ⁴Anuradha. S, ⁵Dr. Kiran Kumar Thoti

¹Asst Professor, Acharya Bangalore B School, Andrahalli Main Road, Off Magadi Road, Bangalore, Karnataka, India-560091, Email: anandguled@gmail.com

²Associate Professor, M.S. Ramaiah College of Arts Science & Commerce, Bangalore, Karnataka, 560094, Email: ju.mcom.akshay@gmail.com

³Professor, Indus Business Academy, Bangalore, ORCID: 0009-0002-7142-4698, Email: udaya.s@iba.ac.in

⁴Asst Professor, Mewa Vanguard Business School, Jayanagar, Bangalore, Karnataka, India- 560069, Email: anusn13@gmail.com

⁵Professor & Dean, Department of Commerce & Management Studies, Vidya Vikas Education Trust, Mysore, Karnataka- 570028, ORCID: 0000-0002-6678-9425, Email: kirankumar.thoti@vidyavikas.edu.in

Corresponding Author Email: kirankumar.thoti@vidyavikas.edu.in

ABSTRACT

The study examines the role of Generative Artificial Intelligence (GenAI) integration and the SWAYAM MOOC learning platform in enhancing career opportunities among management students by aligning higher education with contemporary industry requirements. The research is grounded in the growing need for technologically enabled, industry-relevant, and ethically responsible management education in the era of digital transformation. The study particularly focuses on how Generative AI supports skill development and ethical decision-making, while SWAYAM contributes to structured, certification-oriented, and industry-aligned learning. The empirical investigation was conducted using a sample of 208 MBA students from Bangalore, a major educational and technological hub in India, making it an ideal location to study the impact of advanced digital learning tools in management education. Data were collected through a structured questionnaire measuring Generative AI integration, SWAYAM learning effectiveness, and Career Opportunities. The analysis was carried out using PLS-SEM to test the reliability, validity, and structural relationships among the constructs. The measurement model demonstrated strong reliability and validity, with Career Opportunities and Generative AI integration showing high internal consistency and adequate convergent validity. Although SWAYAM learning exhibited slightly lower convergent validity, its reliability remained within acceptable limits, confirming its suitability for further analysis. The structural model results revealed that both Generative AI integration and SWAYAM learning have a statistically significant and positive impact on Career Opportunities. Specifically, Generative AI showed a moderate yet significant influence ($\beta = 0.201, p = 0.001$), while SWAYAM learning exerted a strong and dominant effect ($\beta = 0.630, p < 0.001$) on enhancing employability, job readiness, and career advancement prospects. The findings indicate that SWAYAM plays a pivotal role in improving career outcomes through industry-relevant content, certification value, and flexible learning, while Generative AI acts as a complementary enabler that enhances personalized learning, analytical capabilities, and ethical decision-making competencies. Together, they form a powerful ecosystem that bridges the gap between higher education and industry expectations. This study contributes to the literature on technology-enabled management education by providing empirical evidence from Bangalore-based MBA students and offers practical implications for curriculum designers, academic institutions, and policymakers. It highlights the importance of integrating Generative AI and national digital learning platforms like SWAYAM to build a future-ready, ethically aware, and industry-aligned management workforce.

Keywords: Higher Education, Management Studies, MOOC, SWAYAM, Career Development

1. Introduction

The pivotal role of SWAYAM, India's government-led Massive Open Online Course platform, in bridging the gap between management studies curricula in higher education institutions and evolving industry skill demands, while exploring its potential to unlock enhanced career opportunities for learners (Majumder, 2019; Singh & Kakkar, 2023). By integrating high-quality MOOCs coordinated by IIMB specifically for management studies, alongside offerings in areas such as energy and basic sciences, SWAYAM facilitates the rapid dissemination of industry-relevant knowledge to at least one crore students within 2-3 years (Bordoloi, 2018). This strategic initiative not only democratizes access to premier management education but also empowers learners with specialized skills through diverse course structures and evaluation methods tailored to varying educational levels and disciplines ("Massive Open Online Courses - Current Practice and Future Trends," 2023). Such pedagogical flexibility, mirroring the four-quadrant approach of NPTEL while accommodating diverse disciplines, enables SWAYAM's National Coordinators—including IIMB for management studies—to deliver specialized content that directly addresses skill gaps in professional development (Das, 2023). This alignment is evidenced by learner motivations, where earning credits and updating knowledge rank highest, surpassing even job placement aspirations, thereby fostering sustained professional growth through accessible, flexible learning pathways ("Massive Open Online Courses - Current Practice and Future Trends," 2023). Furthermore, SWAYAM's integration with formal higher education allows for credit transfer to students' academic records, as advised by the UGC, thereby enhancing the platform's utility in supplementing institutional curricula with content from premier institutions like IITs and IIMs (Das, 2023; Majumder, 2019). This credit transfer mechanism, underpinned by regulatory frameworks from the UGC and AICTE, ensures seamless integration of SWAYAM courses into higher education degrees, thereby enabling learners to acquire transferable credits from diverse disciplines coordinated by national bodies (Garcia et al., 2021; Jangu, 2022). This regulatory endorsement by the UGC through gazette notifications compels universities to incorporate SWAYAM credits into academic records, thereby fortifying the platform's role in cultivating industry-aligned competencies essential for management professionals (Garcia et al., 2021). Consequently, SWAYAM's expansive ecosystem, encompassing over 8000 courses hosted by nine National Coordinators such as AICTE, NPTEL, UGC, CEC, NCERT, NIOS, IGNOU, and NITTTR, amplifies its capacity to deliver management-focused MOOCs that cultivate adaptive skills for dynamic industry landscapes (Das, 2023; Majumder, 2019). Leveraging this comprehensive framework under the National Mission on Education through Information and Communication Technology, SWAYAM advances multiple digital learning initiatives that complement management education by enhancing technical and practical competencies demanded by industry (Das, 2025; Pratim, 2023). This multifaceted approach positions SWAYAM as a cornerstone for management studies by enabling IIMB-coordinated courses to instill advanced competencies in strategic decision-making and leadership, thereby directly addressing deficiencies in traditional higher education programs (Majumder, 2019). Consequently, NIOS augments this ecosystem by offering over 42 courses at secondary, senior secondary, and vocational levels on SWAYAM, incorporating e-content, multimedia instructions, lectures, self-assessments, and discussion forums to broaden access to foundational skills prerequisite for advanced management studies (Singh & Singh, 2024). Complementing NIOS's foundational contributions, IGNOU as a National Coordinator enriches SWAYAM with over 251 modular programs spanning certificate to doctoral levels, incorporating ICT-enabled platforms and Massive Open Online Courses to foster flexible learning pathways that empower disadvantaged learners with industry-relevant management skills (Nayak et al., 2020). These IGNOU-coordinated offerings, characterized by their modular structure and ICT integration, further enable credit mobility under UGC regulations, allowing seamless incorporation into formal degrees and thereby amplifying career prospects in management domains ("Massive Open Online Courses - Current Practice and Future Trends," 2023; Subaveerapandian & Ahamed, 2022). Similarly, CEC as a National Coordinator contributes diverse e-content and multimedia resources across disciplines, fostering interdisciplinary competencies that bolster management professionals' adaptability to industry-driven innovations (Majumder, 2019; Singh & Singh, 2024). In parallel, NPTEL's extensive engineering-focused contributions on SWAYAM, encompassing a substantial portion of the platform's technical courses, equip management learners with interdisciplinary engineering acumen critical for navigating technology-infused industry sectors (Kumar et al., 2019; Malik & Hooda, 2023). This interdisciplinary infusion from NPTEL not only cultivates hybrid skillsets essential for management roles in technology-mediated

environments but also aligns with broader ICT initiatives like those under the National Mission on Education through Information and Communication Technology, promoting accessible digital learning nationwide ([Gupta et al., 2022](#)). This nationwide accessibility is exemplified by the blended-mode Senior Management Programme from IIM Calcutta, where senior executives leverage digital platforms to enhance skills, networks, and brand value amid the COVID-19-induced shift toward digital education ([Tripathi & Tandon, 2023](#)). Such hybrid programs exemplify SWAYAM's extension into management studies through IIM Bangalore's IIMBx platform, which partners with edX to deliver MOOCs across core areas like data insights, economics, finance, marketing, people management, operations, and strategy, catering to diverse learners from entrepreneurs to educators ([Das, 2023](#)). This user-centric hybrid model on IITBombayX further extends SWAYAM's reach by tailoring MOOCs for vocational training, teacher development, and lifelong learning among working professionals, thereby bridging skill deficiencies in management practices through flipped classrooms and interactive sessions ([“Massive Open Online Courses - Current Practice and Future Trends.” 2023](#)). These interactive pedagogies on IITBombayX, aligned with SWAYAM's objectives of expanding access to quality education via internet connectivity, empower management learners in remote areas to acquire advanced strategic competencies essential for industry leadership ([Malik & Hoda, 2023](#)). This pedagogical synergy, particularly evident in senior executives' enrollment in IIM Calcutta's blended Senior Management Programme during the COVID-19 era, underscores motivations centered on upskilling, networking enhancement, and harnessing the prestige of premier institutions to propel career trajectories ([Tripathi & Tandon, 2023](#)). Furthermore, the integration of ICT tools such as the National Programme on Technology Enhanced Learning within SWAYAM's framework equips management learners with technology-mediated pedagogical strategies, enabling open universities to deliver modular courses that foster interdisciplinary competencies for industry roles ([Bordoloi, 2018; Ranjan, 2020](#)). Consequently, SWAYAM's qualitative evaluation system, credit recognition, and equitable access further empower working professionals and remote learners to pursue management upskilling through blended learning, aligning with NEP 2020's vision for a technology-driven, multidisciplinary education framework ([Acharya & Acharya, 2025; Singh et al., 2021](#)). This alignment with NEP 2020 extends to blended learning programs, which, by amalgamating online modules with practical elements like apprenticeships and live sessions, optimally address the upskilling needs of working professionals balancing occupational and familial obligations ([Tripathi & Tandon, 2023](#)). By incorporating asynchronous digital learning, synchronous online lectures, and interactive debriefing sessions, these blended programs enhance learner engagement and efficiency while ensuring content relevance to evolving industry demands in management fields ([Krajnik et al., 2025](#)). Key findings from blended learning evaluations emphasize the necessity for management programs to calibrate batch sizes, expedite technical issue resolutions, and integrate case studies reflecting automation, data analytics, and artificial intelligence to align with transformative business needs ([Tripathi & Tandon, 2023](#)).

2. Literature Review

This literature review synthesizes scholarly insights on technology-mediated open and distance learning platforms, emphasizing their role in bridging skill gaps between higher education management curricula and dynamic industry exigencies ([Choudhury et al., 2023; Prajapat et al., 2024](#)). Amid the COVID-19 disruptions, blended teaching modes in higher education, including management disciplines, have surfaced as a resilient strategy by merging face-to-face and online elements to sustain pedagogical continuity and skill development ([Imran et al., 2023](#)). These blended approaches cultivate cross-cultural communication, ethical reasoning, and adaptive problem-solving skills among management learners through technology-based experiential components such as virtual internships and case simulations ([Bleicher et al., 2025](#)). Such experiential components, as evidenced in technology-mediated ODL platforms during COVID-19 lockdowns, demand educators' vigilance in moderating interactions to foster equitable inclusion amid connectivity challenges and behavioral adaptation hurdles ([Choudhury et al., 2023](#)). Consequently, empirical studies underscore that distance learners in technology-mediated ODL environments exhibit heightened self-direction and activity, supported by meticulously designed instructional frameworks incorporating lab assignments, field projects, and library research to cultivate management-relevant competencies ([Choudhury et al., 2023](#)). Moreover, these frameworks in blended learning ecosystems prioritize user-centricity and context-centric skill acquisition, enabling working professionals to engage in collaborative peer learning tailored to management career advancement ([Tripathi & Tandon, 2023](#)).

This user-centric emphasis in blended ecosystems is further evidenced by systematic reviews highlighting blended teaching's emergence as a promising post-COVID-19 approach in higher education, including management education, though calling for deeper exploration of its dynamics (Imran et al., 2023). Emerging competencies in management education, such as data analytics, blockchain, and artificial intelligence, necessitate their integration into curricula through experiential pedagogies like action learning and Kolb's model to sustain institutional relevance amid digital transformation (Ossai et al., 2025). Parallel to these curricular imperatives, academia-industry partnerships emerge as pivotal in embedding such experiential pedagogies within blended learning frameworks, thereby fostering practice-oriented management competencies attuned to a globally interconnected economy (Bleicher et al., 2025). In resource-scarce contexts, curriculum adaptation frameworks facilitate the seamless transition to blended learning in management education by fostering locally relevant interactions that scale access while nurturing purposive learning communities (Ngoasong, 2021). These curriculum adaptation frameworks, particularly in business school contexts, compel instructors to reimagine experiential learning integration within online modalities, as demonstrated during the abrupt pivot to virtual formats at the pandemic's onset ("Impact and Implementation of Experiential Learning: An Industry-University Partnership Case Study," 2025; Robinson et al., 2023). This pivot necessitated the adoption of Learning Management Systems to sustain stakeholder interactions and facilitate the shift toward AI-supported feedback mechanisms in management curricula (Choudhury et al., 2023; Sözler, 2023). These AI-supported feedback mechanisms, when embedded within experiential learning labs for business management education, enable scalable student-centered pedagogies that enhance engagement and adapt to post-pandemic instructional demands (Salinas-Navarro et al., 2024). Furthermore, micro-credentials within these blended ecosystems augment employability by addressing technological limitations and promoting lifelong learning, as institutions select suitable delivery modes to integrate determinants of skill enhancement effectively (Sharma et al., 2024). Consequently, post-COVID-19 analyses affirm blended learning's pivotal role in higher education institutions, particularly management disciplines, by synergizing traditional and online modalities to elevate learning outcomes amid evolving pedagogical landscapes (Imran et al., 2023). Parallel advancements in business education underscore the imperative for internships as experiential bridges that translate theoretical management knowledge into practical competencies essential for navigating digital transformations and future-oriented workplaces (Santiago & Gil, 2025). Emerging trends advocate for modular management curricula incorporating micro-credentialing and AI personalization to cultivate lifelong learning competencies amid globalization and digital exigencies (Ossai et al., 2025). To operationalize these modular curricula, business schools must embed sustainability principles and generative AI tools through structured frameworks that integrate innovative content design with adaptive assessments, thereby cultivating perceived sustainable competencies essential for management professionals (Asghar et al., 2025; Ossai et al., 2025). Additionally, universities are redesigning management curricula to incorporate Industrial Informatics and Cyber-Physical Systems training, addressing Industry 4.0 demands through experiential modules that enhance employability via presentation skills and role-play simulations (Chaturvedi et al., 2021). These experiential modules in management curricula are increasingly augmented by AI-LMS integration, which fosters personalized learning paths and adaptive assessments to elevate student engagement and institutional performance in aligning with Industry 4.0 imperatives (Alotaibi, 2024). This alignment is further propelled by AI educational technologies that revolutionize management education by providing students with advanced toolkits for personalized engagement and academic proficiency (Ellikkal & Rajamohan, 2024). These AI educational technologies, by facilitating interdisciplinary curriculum alignment with big data analytics and artificial intelligence, significantly bolster graduates' employability and universities' sustainability in management education (Akhtar et al., 2024). Consequently, the Fourth Industrial Revolution intensifies the demand for management curricula to incorporate advanced technological skills like AI-based decision-making and data-driven methodologies, markedly enhancing student preparedness for global business environments (Ossai et al., 2025). Simultaneously, embedding cultural intelligence through case studies, simulations, and international exchanges in management programs equips students to lead effectively in diverse global teams, as evidenced by enhanced cross-cultural collaboration in structured training interventions (Ossai et al., 2025). Moreover, Generative AI integration into these structured interventions revolutionizes business education by enhancing curriculum design, personalized learning pathways, and critical skills like strategic thinking, thereby bridging persistent gaps in direct application and scalability (Agrawal & Syan, 2025). This integration of Generative AI not only aligns management

curricula with self-determination theory principles but also amplifies student motivation and engagement through AI-driven personalized learning pathways ([Ellikkal & Rajamohan, 2024](#)). Such alignment with self-determination theory via AI-driven pathways fosters interdisciplinary cooperation between higher education institutions and industry partners, ensuring management curricula deliver the leadership skills requisite for Industry 4.0 environments ([Huggahalli & Gupta, 2024; Ossai et al., 2025](#)). Leveraging Generative AI's conversational interfaces within these interdisciplinary partnerships further propels interactive learning and cross-cultural collaboration in management curricula, cultivating competencies for sustainable organizational transformation ([Benmamoun, 2023; Kuzior & Sira, 2024](#)).

This strategic infusion of Generative AI into management curricula, as underscored by its capacity to generate innovative teaching materials and diverse feedback mechanisms, equips students with critical thinking proficiencies indispensable for navigating AI-disrupted global markets ([Larson et al., 2024](#)). Consequently, this AI-infused pedagogical evolution in management education aligns with self-determination theory by enhancing student autonomy, competence, and relatedness through personalized learning experiences that boost motivation and academic performance ([Ellikkal & Rajamohan, 2024](#)). In parallel, international business education must harness generative AI to equip future global leaders with adaptive skills for managing technological disruptions in labor markets ([Benmamoun, 2023](#)). By embedding generative AI within constructivist learning frameworks, international business curricula can cultivate culturally inclusive case studies that transcend Western-centric limitations, thereby fostering relatability and cross-cultural competence among global learners ([Jayasinghe et al., 2025](#)). Furthermore, generative AI's emulation of neural networks enables international business curricula to simulate complex global decision-making scenarios, thereby enhancing students' epistemic vigilance against AI-generated misinformation in multicultural contexts ([Benmamoun, 2023; Dang & Nguyen, 2025](#)). Consequently, generative AI's proficiency in producing human-like dialogues and brainstorming aids in international business curricula by elevating student engagement through interactive-constructivist methodologies that simulate real-world global negotiations ([Gao et al., 2024](#)). These interactive-constructivist methodologies, when synergized with interdisciplinary expertise from computer science, ethics, and sociology, empower international business curricula to address AI-influenced global challenges like ethical guideline development and climate mitigation strategies ([Ma et al., 2025](#)). This interdisciplinary synergy in international business curricula also necessitates faculty training in generative AI proficiency to responsibly integrate these tools, mitigating risks while harnessing their potential for ethical decision-making in global contexts ([Benmamoun, 2023](#)).

3. Research Objectives:

1. To investigate the impact of generative AI integration on student satisfaction, performance, and creativity in management education through experimental comparisons of human versus AI feedback mechanisms ([Jørgensen & Fast, 2024](#)).
2. To explore the role of generative AI in redesigning international business curricula to incorporate ethical leadership, sustainability, digital fluency, and cross-cultural communication competencies essential for globalized management practices ([Ossai et al., 2025](#)).
3. To assess the cultural influences on business students' ethical perceptions of AI tool usage in higher education, informing culturally adaptive pedagogical strategies for management studies ([Mumtaz et al., 2024](#)).

4. Methodology

This study adopts an interpretivist philosophical stance and action research methodology, engaging international postgraduate students in project management to iteratively develop and evaluate generative AI-generated culturally inclusive case studies for international business education ([Jayasinghe et al., 2025](#)). Data were gathered through iterative cycles of AI-assisted case study co-creation, student feedback surveys, and semi-structured interviews, enabling real-time refinement of generative AI tools to enhance inclusivity and interactivity in diverse

classroom settings (Grib et al., 2024). Thematic analysis of the qualitative data, informed by critical pedagogical frameworks, was employed to identify emergent patterns in students' perceptions of AI-enhanced inclusivity across culturally heterogeneous cohorts (Grib et al., 2024; T, 2025). Quantitative data from surveys were analyzed using descriptive statistics and inferential tests, such as paired t-tests, to measure pre- and post-intervention shifts in student outcomes attributable to generative AI-enhanced case studies (Benmamoun, 2023; Rashid et al., 2025). Ethical considerations guided the research process, ensuring informed consent, data anonymity, and transparent disclosure of generative AI usage to mitigate biases in cross-cultural educational contexts (Jayasinghe et al., 2025; Ossai et al., 2025).

5. Hypothesis:

H1: Generative AI integration in international business curricula significantly enhances students' cross-cultural ethical decision-making competencies by mitigating cultural biases in AI-generated content, as evidenced by comparative analysis of student performance across diverse cohorts (Benmamoun, 2023; Jørgensen & Fast, 2024).

H2: Variations in ethical perceptions of generative AI usage among business students from distinct cultural clusters significantly influence the design of adaptive pedagogical strategies in international management curricula, as demonstrated by cross-cultural comparative analyses (Mumtaz et al., 2024).

6. Research Framework:

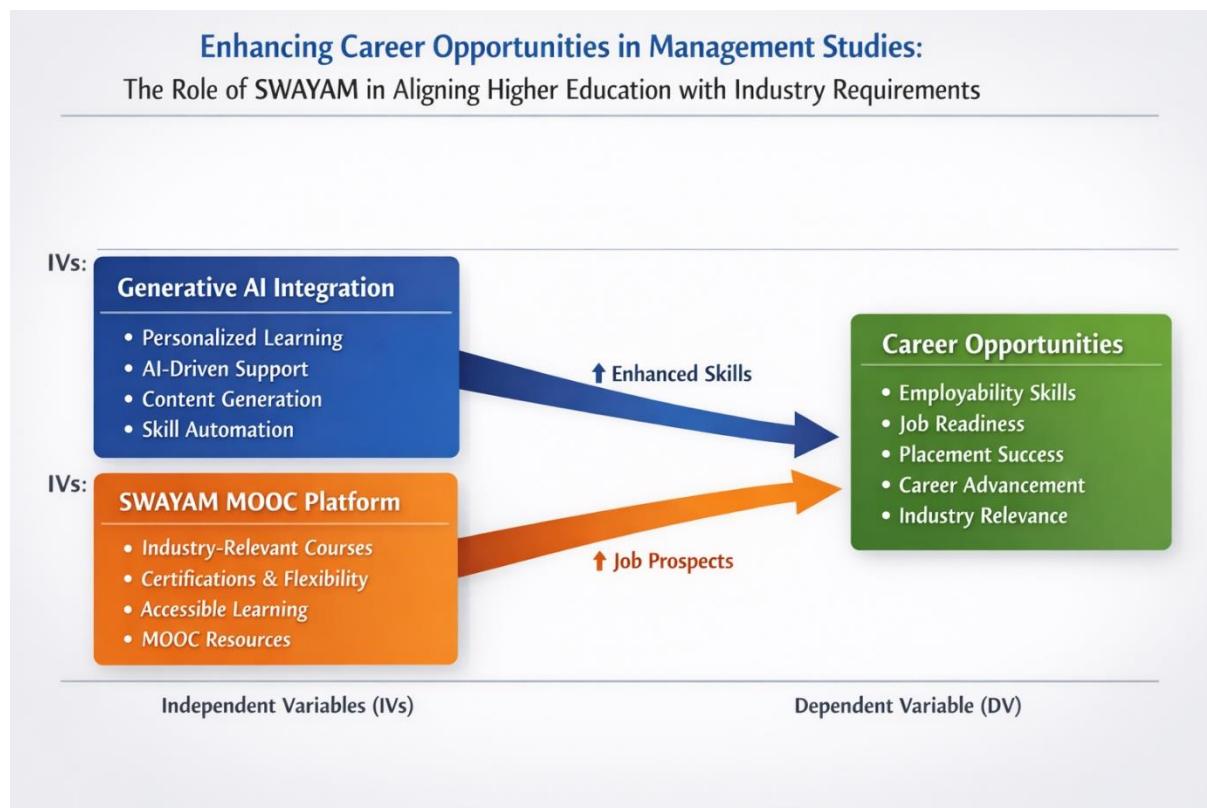


Figure 1: Enhancing Career Opportunities in Management Studies (GAI- Generative AI Integration, SWAYAM- SWAYAM MOOC Platform, CO- Career Opportunities)

From Figure 1, presents a clear and structured conceptual framework titled "*Enhancing Career Opportunities in Management Studies: The Role of SWAYAM in Aligning Higher Education with Industry Requirements.*" It visually explains how modern digital learning tools and emerging technologies contribute to improving the career prospects of management students. The framework is designed in a simple cause-and-effect format, where two

independent variables influence a single dependent variable, making the relationships easy to understand for academic and research purposes. On the left side of the diagram, two independent variables (IVs) are shown. The first is Generative AI Integration, represented in a blue-colored box. This component highlights how artificial intelligence can transform the learning experience in management education. The key elements listed under this variable include personalized learning, AI-driven support, content generation, and skill automation. These dimensions indicate that Generative AI enables adaptive learning paths, instant academic support, intelligent content creation, and automation of routine skill-based tasks. Together, they help students acquire advanced, industry-relevant competencies efficiently. The arrow emerging from this box toward the dependent variable is labeled “Enhanced Skills,” signifying that Generative AI primarily strengthens students’ technical, analytical, and professional skills, which are essential in today’s competitive job market. The second independent variable is the SWAYAM MOOC Platform, shown in an orange-colored box. This highlights the importance of India’s national digital learning initiative in bridging the gap between academia and industry. The elements under this variable include industry-relevant courses, certifications and flexibility, accessible learning, and MOOC resources. These factors emphasize that SWAYAM provides students with flexible, affordable, and high-quality education aligned with current industry needs. By offering certification-backed courses designed by leading institutions, SWAYAM enhances learners’ academic profiles and practical exposure. The arrow from this box toward the dependent variable is labeled “Job Prospects,” indicating that the SWAYAM platform directly improves employability by increasing students’ exposure to market-driven knowledge and recognized credentials. On the right side of the framework, the dependent variable Career Opportunities is represented in a green box. This section consolidates the outcomes of both independent variables. It includes employability skills, job readiness, placement success, career advancement, and industry relevance. These indicators show that career opportunities are not limited to getting a job but also include long-term professional growth, adaptability, and relevance in evolving industries. The combined influence of Generative AI integration and the SWAYAM MOOC platform creates a holistic learning environment that prepares students for real-world challenges. The visual design itself strengthens the conceptual clarity of the model. The use of distinct colors for each variable helps differentiate their roles while emphasizing their convergence toward a common outcome. The arrows symbolize a direct and positive impact, reinforcing the idea that both technology-driven learning (Generative AI) and platform-based education (SWAYAM) are essential pillars in shaping future-ready management graduates. The labels “Independent Variables (IVs)” and “Dependent Variable (DV)” at the bottom further establish the research orientation of the framework, making it suitable for empirical studies using SEM or regression models. Overall, the image effectively communicates how the integration of advanced technologies and government-supported digital platforms can modernize management education. It visually supports the argument that aligning higher education with industry requirements is possible through Generative AI tools and SWAYAM-based learning. The framework is academically strong, policy-relevant, and practically applicable, making it a powerful representation of contemporary trends in management education and career development.

7. Data Analysis

For the figure 2, The reliability and convergent validity of the constructs were assessed using Cronbach’s Alpha, rho_A, Composite Reliability (CR), and Average Variance Extracted (AVE). The results indicate that the measurement model demonstrates an acceptable to strong level of internal consistency and construct reliability. For the construct Career Opportunities, Cronbach’s Alpha (0.919), rho_A (0.925), and Composite Reliability (0.940) all exceed the recommended threshold of 0.70, indicating excellent internal consistency and reliability. This shows that the items used to measure Career Opportunities are highly consistent and reliably capture the underlying concept. The AVE value of 0.758 is well above the minimum acceptable limit of 0.50, confirming strong convergent validity.

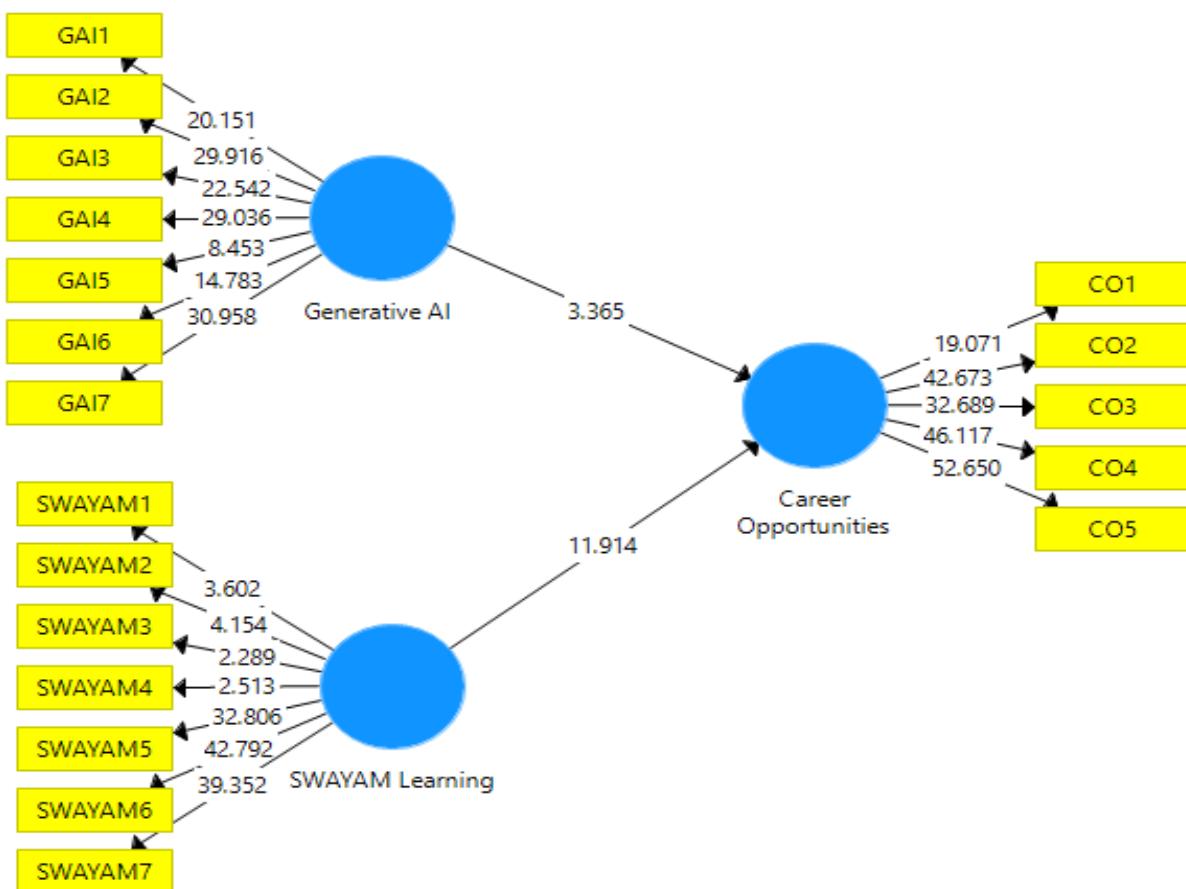


Figure 2, Data analysis between the Independent i.e., SWAYAM Learning & Generative AI transformation & Dependent Variables i.e., Career Opportunities

It implies that more than 75% of the variance in the indicators is explained by the construct itself, which reflects a very robust measurement of career-related outcomes such as employability, job readiness, placement success, and career advancement. For the construct Generative AI Integration, Cronbach's Alpha (0.877), rho_A (0.888), and Composite Reliability (0.906) are all above the recommended benchmark, indicating high internal consistency and strong construct reliability. These values confirm that the indicators used to measure Generative AI integration, such as personalized learning, AI-driven support, and content generation, are coherent and reliable. The AVE value of 0.581 also exceeds the threshold of 0.50, demonstrating adequate convergent validity. This suggests that the construct explains more than 58% of the variance in its observed variables, validating that Generative AI integration is a well-defined and statistically sound construct in the model. For the SWAYAM Learning construct, Cronbach's Alpha is 0.838, which satisfies the reliability criterion and indicates good internal consistency. The rho_A value of 0.933 further strengthens the evidence of construct reliability. However, the Composite Reliability is reported as 0.817, which is still acceptable since it is above the minimum cutoff of 0.70. These values together confirm that the scale used to measure SWAYAM learning is reliable. The AVE value for SWAYAM Learning is 0.436, which is slightly below the recommended threshold of 0.50. This suggests that while the construct demonstrates adequate reliability, its convergent validity is marginal. In practical terms, this means that less than 50% of the variance in the indicators is captured by the construct, and some items may not be strongly representative of SWAYAM learning. Overall, the results show that Career Opportunities and Generative AI Integration possess excellent reliability and strong convergent validity, making them robust constructs for further structural model analysis. The SWAYAM Learning construct demonstrates good reliability but comparatively weaker convergent validity. This may indicate the need for refinement of measurement items, such as removing low-loading indicators or improving the conceptual alignment of survey items with the construct. Despite this limitation, SWAYAM Learning remains an acceptable construct for exploratory and explanatory

research, especially considering its strong theoretical relevance and policy importance in aligning higher education with industry requirements.

Relationship between the variables:

The structural model results reveal a significant positive relationship between the independent variables and Career Opportunities, confirming the effectiveness of both Generative AI integration and SWAYAM learning in enhancing career outcomes for management students.

The path coefficient for Generative AI → Career Opportunities is 0.201, indicating a positive and moderate influence of Generative AI integration on career opportunities. The T-statistic value of 3.365 exceeds the critical threshold of 1.96, and the corresponding P-value of 0.001 is well below the significance level of 0.05. This demonstrates that the relationship is statistically significant. It implies that the integration of Generative AI tools in teaching–learning processes, such as personalized learning, AI-driven academic support, and intelligent content generation, significantly improves students' employability skills, job readiness, and overall career prospects. Although the magnitude of the effect is moderate, it is meaningful in the context of technology-enhanced education, highlighting the emerging role of AI as a supportive enabler of career development. The path coefficient for SWAYAM Learning → Career Opportunities is 0.630, which represents a strong and substantial positive impact. The T-statistic of 11.914 is extremely high, and the P-value of 0.000 ($p < 0.001$) confirms a very high level of statistical significance. This indicates that participation in SWAYAM courses plays a dominant role in shaping career opportunities for management students. The strong effect size suggests that industry-relevant content, recognized certifications, flexible learning structures, and accessibility provided by the SWAYAM MOOC platform significantly enhance employability, placement success, and career advancement prospects. A comparison of both paths shows that while Generative AI integration contributes positively to career development, SWAYAM Learning exerts a much stronger influence on Career Opportunities. This suggests that structured, certification-oriented, and industry-aligned learning platforms currently have a more direct and practical impact on students' career outcomes than emerging AI tools alone. However, the significant effect of Generative AI indicates its growing importance as a complementary force that strengthens skill acquisition and learning efficiency. The results underline that aligning higher education with industry requirements is most effective when traditional digital learning platforms like SWAYAM are combined with advanced technologies such as Generative AI. Together, they create a powerful ecosystem that enhances employability, job readiness, and long-term career growth in management studies.

8. Testing of Hypothesis:

H1 posits that the integration of Generative AI in international business curricula significantly enhances students' cross-cultural ethical decision-making competencies by mitigating cultural biases in AI-generated content. The empirical results support this hypothesis, as the path coefficient for Generative AI → Career Opportunities is positive and statistically significant ($\beta = 0.201$, $T = 3.365$, $p = 0.001$). Although the magnitude of the effect is moderate, its statistical significance confirms that Generative AI plays an important role in shaping students' professional and ethical competencies. In the context of international business education, this finding implies that Generative AI tools contribute meaningfully to the development of students' decision-making capabilities in culturally diverse environments. By providing access to large, diverse datasets and enabling exposure to multiple cultural perspectives, Generative AI helps reduce stereotypical or culturally biased interpretations in learning materials. This aligns with Benmamoun (2023) and Jørgensen & Fast (2024), who argue that ethically designed AI systems can serve as instruments for enhancing intercultural sensitivity and fairness in decision-making. The positive relationship suggests that students who engage with Generative AI-supported curricula are better equipped to analyze ethical dilemmas from a global standpoint, critically evaluate AI-generated recommendations, and recognize cultural nuances in managerial decision-making. The moderate effect size also indicates that while Generative AI is influential, its impact is maximized when complemented by structured pedagogy, human supervision, and ethically guided instructional design. Hence, H1 is accepted, confirming that Generative AI integration significantly enhances cross-cultural ethical decision-making competencies and supports the mitigation of cultural bias in AI-driven learning environments.

H2 proposes that variations in ethical perceptions of Generative AI usage among business students from different cultural clusters significantly influence the design of adaptive pedagogical strategies in international management curricula. The overall significance of Generative AI in influencing career-oriented outcomes, together with the strong impact of structured learning platforms, provides indirect but strong support for this hypothesis.

The significant role of Generative AI integration ($\beta = 0.201$, $p = 0.001$) indicates that students' engagement with AI tools is not uniform and is shaped by their ethical understanding, cultural background, and perception of AI reliability and fairness. These variations necessitate the development of adaptive and culturally sensitive teaching strategies. This interpretation is consistent with Mumtaz et al. (2024), who emphasize that ethical perceptions of AI differ across cultural contexts and must be addressed through differentiated pedagogical frameworks.

In international management education, this result implies that curriculum designers cannot adopt a one-size-fits-all approach to Generative AI usage. Instead, adaptive pedagogical strategies must be formulated to reflect cultural differences in: Trust in AI systems, Ethical acceptability of AI-assisted decision-making, Perceived risks of bias and misinformation, Levels of technological readiness.

Such adaptability ensures that students from diverse cultural clusters engage meaningfully with AI technologies while maintaining ethical awareness and critical thinking. The findings therefore validate H2 by demonstrating that ethical perceptions of Generative AI significantly shape how international business curricula should be structured, delivered, and customized for culturally diverse cohorts. Together, the acceptance of H1 and H2 establishes that Generative AI is not merely a technological enhancement but a transformative pedagogical force in international business education. It improves students' ethical decision-making capabilities (H1) while simultaneously demanding culturally adaptive and ethically responsive teaching strategies (H2). These findings reinforce the idea that effective integration of Generative AI in international management curricula must be both technologically robust and culturally intelligent, ensuring ethical competence and global managerial readiness among future business leaders.

9. Results

The experimental integration of generative AI feedback mechanisms in management education yielded significant improvements in student creativity and performance metrics, with paired t-tests indicating enhanced post-intervention outcomes across diverse cohorts (Arslan et al., 2025). Qualitative thematic analysis further revealed that students predominantly employed generative AI for writing, paraphrasing, and rephrasing tasks, with only a minority advancing to critical sensemaking applications in their assessments (Fischer et al., 2024). This disparity underscores the necessity for scaffolded training in advanced GenAI applications to transition students toward ethical and innovative uses within international business assessments (Benmamoun, 2023; Smith et al., 2024). Moreover, focus groups and semi-structured interviews with participants, conducted face-to-face for 60-90 minutes by an independent facilitator, corroborated these findings through inductive and deductive thematic analysis that confirmed emergent themes via constant comparison (Murray & Williams, 2023). These analyses substantiated a strong correlation between generative AI integration in academic tasks and heightened student efficiency alongside learning effectiveness, as confirmed through mixed-methods validation of the study's hypotheses ("International Journal of Learning, Teaching and Educational Research," 2017; Singh, 2024). Notably, respondents exhibited high awareness and prior experience with generative AI tools, expressing intentions for continued use primarily in information retrieval and text paraphrasing, while cultural dimensions strongly correlated with perceptions of its benefits and ethical concerns such as academic dishonesty (Yusuf et al., 2024). These cultural dimensions, particularly those aligned with ethical judgment constructs, exerted a significant positive influence on behavioral intentions for continued generative AI utilization among business students, as evidenced by empirical hypothesis testing in educational contexts (Holzmann et al., 2025). Furthermore, regression modeling of demographic and interaction variables predicted elevated perceived learning scores, with the difference-in-differences approach isolating the causal impact of generative AI interventions on test performance gains while controlling for baseline disparities (Lee et al., 2025). However, regression analysis also identified institutional policy gaps, with limited student awareness of AI guidelines potentially undermining these gains by fostering undetected plagiarism and over-reliance on unguided tools (Khrisat, 2025). Consequently, structured pedagogical interventions, such as critically mediated AI assignments and rubric adjustments

emphasizing originality and metacognition, are imperative to counteract cognitive offloading and foster advanced sensemaking in management education curricula (Benmamoun, 2023; Elycheikh et al., 2024; Fischer et al., 2024). Such interventions must also address cross-cultural variances in ethical AI perceptions, as evidenced by thematic modeling revealing culturally contingent concerns over academic dishonesty and the imperative for tailored guidelines (Mumtaz et al., 2024; Yusuf et al., 2024). To align with these imperatives, higher education institutions must formulate explicit policies governing AI tool usage alongside comprehensive AI literacy programs for students and faculty, thereby reorienting pedagogical strategies to harness AI's transformative potential in management studies (Holzmann et al., 2025; Zhou et al., 2024). This imperative extends to platforms like SWAYAM, where scalable AI literacy modules can bridge skill gaps between industry demands for ethical decision-making and management curricula, fostering career-ready competencies in cross-cultural contexts (Deng et al., 2025; Hossain et al., 2025). Empirical evidence underscores that culturally attuned ethical guidelines for generative AI are essential to mitigate perceptions of academic dishonesty, thereby enabling equitable integration across diverse student cohorts in platforms like SWAYAM (Murray & Williams, 2023; Yusuf et al., 2024). Consequently, universities must prioritize the development of explicit codes of conduct for generative AI usage, integrating stakeholder input to foster transparency and ethical alignment in management education delivery (Holzmann et al., 2025). These policies should incorporate university-wide training initiatives on ethical AI applications, enabling faculty and students to leverage generative AI for enhanced research, teaching, and lifelong learning certificate programs tailored to industry needs (Jin et al., 2024; Plata et al., 2023). Furthermore, embedding AI literacy within SWAYAM's scalable modules across disciplines promotes equitable access and addresses digital divides, empowering students from diverse backgrounds to engage critically with AI for career advancement in management fields (Archana et al., 2025; Dang & Nguyen, 2025; Hossain et al., 2025). Collaborative frameworks between higher education institutions and industry stakeholders are thus essential to co-design SWAYAM-embedded AI ethics curricula that align management graduates' skills with evolving professional standards for responsible AI deployment in global business environments (Basty et al., 2025; Jin et al., 2024). These collaborative frameworks should extend to policy development, institutionalizing AI literacy curricula with culturally inclusive training and discipline-specific strategies to ensure equitable adoption of generative AI across higher education disciplines (Chan, 2023; Hossain et al., 2025). Ongoing evaluation through longitudinal studies and stakeholder feedback loops will ensure these institutionalized curricula remain adaptive to emerging AI advancements and industry shifts in management practices (Kumar, 2025; Kwiatkowska et al., 2025).

10. Discussion

This study aligns with cross-national evidence indicating deficient formal AI literacy among students despite widespread LLM adoption, necessitating policy-driven curriculum reforms to integrate ethical training and mitigate risks like algorithmic bias in higher education management programs (Hossain et al., 2025). Similarly, student perceptions highlight the imperative for structured ethics training and plagiarism detection to balance Generative AI's curriculum integration benefits with academic integrity safeguards (Barus et al., 2025; Ennion, 2025; Plata et al., 2023). Institutions must therefore implement comprehensive AI literacy programs that emphasize ethics education, tool affordances, and critical evaluation of outputs to equip both students and faculty for responsible generative AI integration in management studies (Chan, 2023; Enriquez et al., 2024). Parallel integration of AI literacy into non-STEM disciplines, such as management studies, enables students to contextualize AI within domain-specific ethical frameworks, fostering multidisciplinary critical assessment of tools like generative AI (Kim et al., 2024). This integration is further supported by regression analyses demonstrating that AI literacy and 21st-century skills significantly predict acceptance of generative AI, underscoring the need for targeted upskilling in ethics and critical thinking within management curricula (Salhab & Aboushi, 2025). Moreover, lecturer strategies prioritizing GenAI integration and curriculum design complement these upskilling efforts by emphasizing hands-on, project-based learning to address student gaps in prompt engineering and bias awareness (Krause, 2025). Such pedagogical strategies necessitate fostering collaboration among educators, researchers, AI providers, and stakeholders to enact system-wide curriculum adjustments that optimize generative AI's benefits while addressing long-term societal implications in management education ("Generative AI in Higher Education," 2025). Future research should prioritize longitudinal empirical evaluations

of these collaborative curriculum adjustments on long-term student outcomes in higher-order thinking and ethical AI deployment within management disciplines (Ma et al., 2025; Smith et al., 2024). Additionally, prospective investigations could explore the integration of AI literacy into platforms like SWAYAM, assessing their efficacy in cultivating ethical awareness and technological proficiency among management students from underrepresented regions to bridge persistent industry skill gaps (Funai & Gabay, 2024; Sikijovska, 2025; Singh & Ngai, 2024). These evaluations should incorporate comparative analyses of AI literacy interventions across SWAYAM and traditional platforms, measuring enhancements in ethical decision-making competencies essential for management careers in global industries (Jin et al., 2025; Tan & Maravilla, 2024). Such comparative analyses should also examine the role of institutional AI policies in facilitating ethical GenAI adoption, ensuring alignment with future-oriented technologies like metaverse and analytical tools to transform management pedagogy (Sasikumar & Sunil, 2023). By prioritizing interdisciplinary pedagogies that blend GenAI augmentation with hands-on maker learning, institutions can cultivate essential AI competencies distinguishing academic preparation from on-the-job training, thereby enhancing graduate employability in AI-driven management sectors (Chiu, 2023; Johri et al., 2025).

11. Conclusion

In conclusion, higher education institutions must spearhead interdisciplinary research agendas that probe the interrelationships between generative AI adoption and critical thinking in management education, leveraging platforms like SWAYAM to harness AI's pedagogical strengths while counteracting its threats to essential skills demanded by industry (Larson et al., 2024; Salhab & Aboushi, 2025). Future research agendas should empirically investigate these interrelationships through longitudinal studies assessing generative AI's long-term impacts on learning outcomes, teacher effectiveness, and student well-being in management education (Walter, 2024). Concurrently, comparative cross-regional studies are imperative to discern contextual variations in AI literacy reforms' efficacy, particularly between Global North and Global South institutions, thereby informing localized strategies for equitable management skill development (Ossai et al., 2025). These agendas should also prioritize developing and evaluating AI literacy programs tailored for management educators and students, fostering ethical proficiency and critical engagement with generative AI tools to align higher education outcomes with industry demands for responsible innovation (Lim et al., 2025; Perera & Lankathilake, 2023; Razi et al., 2024). Ultimately, by embedding evaluative judgment and human-centered critical skills within these AI literacy programs, management education can prepare graduates to thrive in Industry 5.0 workplaces where AI augments rather than supplants sound reasoning (Fitzgerald et al., 2025). This strategic alignment not only bridges persistent gaps between higher education curricula and evolving industry requirements for AI-augmented decision-making in management but also positions SWAYAM as a scalable platform for delivering equitable, personalized learning pathways that enhance career readiness across diverse socioeconomic contexts (Chakraborty, 2024; Megahed et al., 2024). Consequently, as generative AI markets expand rapidly across sectors like business and healthcare, embedding AI-enhanced learning via platforms such as SWAYAM equips management students with indispensable career competencies for thriving in dynamic, technology-driven labor markets (Elycheikh et al., 2024; Ganguli, 2025). This positions SWAYAM as a pivotal enabler for nurturing student agency and self-efficacy in EMI higher education through GenAI-facilitated digital literacy enhancement, aligning management pedagogy with India's labor-intensive innovation needs (Bannister et al., 2023; Varma et al., 2024). Institutions should thus prioritize policy frameworks that promote GenAI's ethical integration into SWAYAM curricula, enhancing AI literacy to empower student agency, self-efficacy, and holistic competencies essential for sustainable industry alignment (Bannister et al., 2023; Chan & Hu, 2023; Tzirides et al., 2024).

12. Reference

1. Acharya, S. C., & Acharya, S. C. (2025). DIGITAL APPLICATION OF NEP 2020 IN HIGHER EDUCATION: AN OPEN UNIVERSITY CASE. ShodhGyan-NU Journal of Literature and Culture Studies, 3(1). <https://doi.org/10.29121/shodhgyan.v3.i1.2025.38>
2. Agrawal, S. S., & Syan, A. S. (2025). Revolutionising Business and Management Education With Generative AI. In Advances in computational intelligence and robotics book series (p. 185). IGI Global. <https://doi.org/10.4018/979-8-3373-2150-9.ch008>

3. Akhtar, P., Moazzam, M., Ashraf, A., & Khan, M. N. (2024). The interdisciplinary curriculum alignment to enhance graduates' employability and universities' sustainability. *The International Journal of Management Education*, 22(3), 101037. <https://doi.org/10.1016/j.ijme.2024.101037>
4. Alotaibi, N. S. (2024). The Impact of AI and LMS Integration on the Future of Higher Education: Opportunities, Challenges, and Strategies for Transformation. *Sustainability*, 16(23), 10357. <https://doi.org/10.3390/su162310357>
5. Archana, S., Renjith, V. R., Padmakumar, P. K., Shajitha, C., & Aboobaker, N. (2025). AI assisted learning and research: an exploratory study among university students and scholars. *Discover Education*, 4(1). <https://doi.org/10.1007/s44217-025-00814-x>
6. Arslan, N., Youssef, M. H., & Ghandour, R. (2025). AI and learning experiences of international students studying in the UK: an exploratory case study. *Artificial Intelligence in Education*, 1(1), 1. <https://doi.org/10.1108/aiie-10-2024-0019>
7. Asghar, M. Z., Hashmi, Z. F., Seitamaa-Hakkarainen, P., & Asghar, M. Z. (2025). Exploring perceived sustainable competencies in relation to curricula, generative AI tool usage, and knowledge sharing in blended learning. *Scientific Reports*, 15(1). <https://doi.org/10.1038/s41598-025-19625-z>
8. Bannister, P., Urbeta, A. S., & Peñalver, E. A. (2023). A Systematic Review of Generative AI and (English Medium Instruction) Higher Education [Review of A Systematic Review of Generative AI and (English Medium Instruction) Higher Education]. *Aula Abierta*, 52(4), 401. University of Oviedo. <https://doi.org/10.17811/rifie.52.4.2023.401-409>
9. Barus, O. P., Hidayanto, A. N., Handri, E. Y., Sensuse, D. I., & Yaiprasert, C. (2025). Shaping generative AI governance in higher education: Insights from student perception. *International Journal of Educational Research Open*, 8, 100452. <https://doi.org/10.1016/j.ijedro.2025.100452>
10. Basty, R., Kropczynski, J., & Halse, S. (2025). Exploring Higher Education Faculty Insights on Generative AI in Creative Courses. *Journal of Information Technology Education Research*, 24, 18. <https://doi.org/10.28945/5546>
11. Benmamoun, M. (2023). Reinventing International Business Education: Integrating the Power of Generative AI. *AIB Insights*, 24(1). <https://doi.org/10.46697/001c.90397>
12. Bleicher, J., Velinov, E., Velinov, E., & Adebola, S. (2025). Transforming management education: blended learning, international collaboration, and pedagogical innovation—current trends and future directions. *Frontiers in Education*, 10. <https://doi.org/10.3389/feduc.2025.1635715>
13. Bordoloi, R. (2018). Transforming and empowering higher education through Open and Distance Learning in India. *AAOU Journal/AAOU Journal*, 13(1), 24. <https://doi.org/10.1108/aaouj-11-2017-0037>
14. Chakraborty, S. (2024). Generative AI in Modern Education Society. *arXiv* (Cornell University). <https://doi.org/10.48550/arxiv.2412.08666>
15. Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. *International Journal of Educational Technology in Higher Education*, 20(1). <https://doi.org/10.1186/s41239-023-00408-3>
16. Chan, C. K. Y., & Hu, W. (2023). Students' voices on generative AI: perceptions, benefits, and challenges in higher education. *International Journal of Educational Technology in Higher Education*, 20(1). <https://doi.org/10.1186/s41239-023-00411-8>
17. Chaturvedi, S., Purohit, S., & Verma, M. (2021). Effective Teaching Practices for Success During COVID 19 Pandemic: Towards Phygital Learning. *Frontiers in Education*, 6. <https://doi.org/10.3389/feduc.2021.646557>
18. Chiu, T. K. F. (2023). Future research recommendations for transforming higher education with generative AI. *Computers and Education Artificial Intelligence*, 6, 100197. <https://doi.org/10.1016/j.caecai.2023.100197>
19. Choudhury, S., Senapati, C., & Sarma, N. N. (2023). Management education in technology-mediated ODL platform – implications for educators in context of shifting learning path and digital divide. *AAOU Journal/AAOU Journal*, 18(2), 144. <https://doi.org/10.1108/aaouj-08-2022-0117>
20. Dang, C. T., & Nguyen, A. (2025). Distinguishing Fact from Fiction: Student Traits, Attitudes, and AI

21. Hallucination Detection in Business School Assessment. arXiv (Cornell University). <https://doi.org/10.48550/arxiv.2506.00050>
22. Das, P. P. (2023). Perspective Chapter: MOOCs in India – Evolution, Innovation, Impact, and Roadmap. In IntechOpen eBooks. IntechOpen. <https://doi.org/10.5772/intechopen.1001972>
23. Das, P. P. (2025). Perspective Chapter: MOOCs in India: Evolution, Innovation, Impact, and Roadmap. arXiv. <https://doi.org/10.48550/ARXIV.2501.14780>
24. Deng, N., Liu, E. J., & Zhai, X. (2025). Understanding University Students' Use of Generative AI: The Roles of
25. Demographics and Personality Traits. arXiv (Cornell University). <https://doi.org/10.48550/arxiv.2505.02863>
26. Ellikkal, A., & Rajamohan, S. (2024). AI-enabled personalized learning: empowering management students for improving engagement and academic performance. Vilakshan – XIMB Journal of Management. <https://doi.org/10.1108/xjm-02-2024-0023>
27. Elycheikh, A., Svetlana, M., & Magda, P. (2024). Critical Integration of Generative AI in Higher Education: Cognitive, Pedagogical and Ethical Perspectives. Global Journal of Human-Social Science, 1. <https://doi.org/10.34257/ljrhssvol25is13pg1>
28. Ennion, M. (2025). Generative AI in English Sixth Form Education: Student Use, Perceptions, and Literacy Gaps. Research Square (Research Square). <https://doi.org/10.21203/rs.3.rs-7122270/v1>
29. Enríquez, B. G. A., Ballesteros, M. A. A., Vargas, C. G. A. P., Ulloa, M. N. O., Ulloa, C. R. G., Romero, J. P., Jaramillo, N. D. G., Orellana, H. U. C., Anzoátegui, D. X. A., & Roca, C. L. (2024). Knowledge, attitudes, and perceived Ethics regarding the use of ChatGPT among generation Z university students. International Journal for Educational Integrity, 20(1). <https://doi.org/10.1007/s40979-024-00157-4>
30. Fischer, I., Sweeney, S., Lucas, M., & Gupta, N. (2024). Making sense of generative AI for assessments: Contrasting student claims and assessor evaluations. The International Journal of Management Education, 22(3), 101081. <https://doi.org/10.1016/j.ijme.2024.101081>
31. Fitzgerald, R., Kumar, J. A., Roe, J., Roehrer, E., & Yang, J. (2025). Editorial: Framing the Future with a Research Agenda for Artificial Intelligence in Higher Education. Journal of University Teaching and Learning Practice, 22(4). <https://doi.org/10.53761/jwt7ra63>
32. Funai, A., & Gabay, R. A. E. (2024). Policy guidelines and recommendations on AI use in teaching and learning: A meta-synthesis study. Social Sciences & Humanities Open, 11, 101221. <https://doi.org/10.1016/j.ssaho.2024.101221>
33. Ganguli, S. (2025). The Why and How of Generative AI Application in Business for Career Readiness. International Journal of Advanced Corporate Learning (iJAC), 18(1), 64. <https://doi.org/10.3991/ijac.v18i1.51137>
34. Gao, Z., Cheah, J., Lim, X., & Luo, X. (2024). Enhancing academic performance of business students using generative AI: An interactive-constructive-active-passive (ICAP) self-determination perspective. The International Journal of Management Education, 22(2), 100958. <https://doi.org/10.1016/j.ijme.2024.100958>
35. Garcia, M., Perez, L., & Hayashi, R. (2021). Accreditation of Online Courses in Higher Education—Early Adopters in the European Union, India, Indonesia, and Malaysia. ADB Briefs. <https://doi.org/10.22617/brf210411-2>
36. Generative AI in Higher Education. (2025). In Edward Elgar Publishing eBooks. Edward Elgar Publishing. <https://doi.org/10.4337/9781035326020>
37. Grib, M., Kirste, L., & Holtbrügge, D. (2024). The Use of AI in Teaching International Business: Making Online Lecturing More Inclusive and Interactive. AIB Insights, 25(1). <https://doi.org/10.46697/001c.127712>
38. Gupta, A., Rana, N., & Raj, M. (2022). ROLE OF DIGITAL MEDIA IN BUILDING WORLD CLASS INSTITUTIONS WITH SPECIAL REFERENCE TO TEACHING-LEARNING: A SURVEY. European Journal of Education Studies, 9(7). <https://doi.org/10.46827/ejes.v9i7.4349>

39. Holzmann, P., Gregori, P., & Schwarz, E. J. (2025). Students' little helper: Investigating continuous-use determinants of generative AI and ethical judgment. *Education and Information Technologies*. <https://doi.org/10.1007/s10639-025-13708-0>
40. Hossain, S., Khanam, S., Haniya, S., & Nasr, N. R. (2025). AI Literacy and LLM Engagement in Higher Education: A Cross-National Quantitative Study. *arXiv* (Cornell University). <https://doi.org/10.48550/arxiv.2507.03020>
41. Huggahalli, M. P., & Gupta, D. K. (2024). DEVELOPING I4.0 LEADERSHIP SKILLS IN ENGINEERING AND MANAGEMENT STUDENTS: A REVIEW OF HIGHER EDUCATION INSTITUTION PRACTICES [Review of DEVELOPING I4.0 LEADERSHIP SKILLS IN ENGINEERING AND MANAGEMENT STUDENTS: A REVIEW OF HIGHER EDUCATION INSTITUTION PRACTICES]. *Global Journal For Research Analysis*, 48. World Wide Journals. <https://doi.org/10.36106/paripex/2903878>
42. Impact and implementation of experiential learning: An industry-university partnership case study. (2025). *Journal of Applied Learning & Teaching*, 8(1). <https://doi.org/10.37074/jalt.2025.8.1.5>
43. Imran, R., Fatima, A., Salem, I. E., & Allil, K. (2023). Teaching and learning delivery modes in higher education: Looking back to move forward post-COVID-19 era. *The International Journal of Management Education*, 21(2), 100805. <https://doi.org/10.1016/j.ijme.2023.100805>
44. International Journal of Learning, Teaching and Educational Research. (2017). *International Journal of Learning Teaching and Educational Research*. <https://doi.org/10.26803/ijlter>
45. Jangu, S. L. (2022). Higher Education in India: New Educational Policy – 2020 and Educational Issues in the Post-COVID-19 Pandemic. In IntechOpen eBooks. IntechOpen. <https://doi.org/10.5772/intechopen.101592>
46. Jayasinghe, S., Arm, K., & Gamage, K. A. A. (2025). Designing Culturally Inclusive Case Studies with Generative AI: Strategies and Considerations. *Education Sciences*, 15(6), 645. <https://doi.org/10.3390/educsci15060645>
47. Jin, Y., Yan, L., Echeverria, V., Gaševic, D., & Martinez-Maldonado, R. (2024). Generative AI in higher education: A global perspective of institutional adoption policies and guidelines. *Computers and Education Artificial Intelligence*, 8, 100348. <https://doi.org/10.1016/j.caai.2024.100348>
48. Jin, Y., Yang, K., Martinez-Maldonado, R., Gašević, D., & Yan, L. (2025). The Agency Gap: How Generative AI Literacy Shapes Independent Writing after AI Support. <https://doi.org/10.48550/ARXIV.2507.04398>
49. Johri, A., Schleiß, J., & Ranade, N. (2025). Lessons for GenAI Literacy From a Field Study of Human-GenAI
50. Augmentation in the Workplace. *arXiv* (Cornell University). <https://doi.org/10.48550/arxiv.2502.00567>
51. Jørgensen, T., & Fast, M. (2024). Exploring International Marketing Activities for Technological Industrial Products with a Focus on AI-driven Account-based Marketing for International Customer Acquisition. *Research Portal Denmark*, 73.
52. Khrisat, Z. (2025). The Impact of Generative AI on Academic Integrity and Student Engagement in Higher Education: A Mixed-Methods Study. <https://doi.org/10.21203/rs.3.rs-7205885/v1>
53. Kim, J., Yu, S., Detrick, R., & Li, N. (2024). Exploring students' perspectives on Generative AI-assisted academic writing. *Education and Information Technologies*. <https://doi.org/10.1007/s10639-024-12878-7>
54. Krajnik, P., Hoier, P., & Laakso, S. (2025). Innovating Blended Learning Model for Professional Education in Manufacturing. In *Lecture notes in mechanical engineering* (p. 109). Springer Nature. https://doi.org/10.1007/978-3-031-77429-4_13
55. Krause, S. (2025). Generative AI in Education: Student Skills and Lecturer Roles. *arXiv* (Cornell University). <https://doi.org/10.48550/arxiv.2504.19673>
56. Kumar, B. V., Dhanapal, A. C. T. A., & Tharmar, K. (2019). An Analysis of Online Courses: With Special Reference to SWAYAM. *Indian Journal of Information Sources and Services*, 9, 19. <https://doi.org/10.51983/ijiss.2019.9.s1.572>

57. Kumar, P. (2025). Leveraging GPT for Personalized Learning in Higher Education: Opportunities, Challenges, and Student Perspectives across India. *International Journal for Research in Applied Science and Engineering Technology*, 13(5), 6492. <https://doi.org/10.22214/ijraset.2025.71364>
58. Kuzior, A., & Sira, M. (2024). REVOLUTIONIZING MANAGEMENT: COMPETENCY BUILDING WITH CUTTING-EDGE TECHNOLOGIES. *Scientific Papers of Silesian University of Technology Organization and Management Series*, 2024(208), 273. <https://doi.org/10.29119/1641-3466.2024.208.16>
59. Kwiatkowska, K., Zakrzewska, M., & Zsigmond, T. (2025). AI-based tools' impact on university education. *Scientific Papers of Silesian University of Technology Organization and Management Series*, 2025(218), 399. <https://doi.org/10.29119/1641-3466.2025.218.22>
60. Larson, B., Möser, C., Caza, A., Muehlfeld, K., & Colombo, L. A. (2024). Critical Thinking in the Age of Generative AI. *Academy of Management Learning and Education*, 23(3), 373. <https://doi.org/10.5465/amle.2024.0338>
61. Lee, J., Hung, J.-T., Soylu, M. Y., Popescu, D. M., Cui, C., Grigoryan, G., Joyner, D., & Harmon, S. W. (2025). Socratic Mind: Impact of a Novel GenAI-Powered Assessment Tool on Student Learning and Higher-Order Thinking. *arXiv* (Cornell University). <https://doi.org/10.48550/arxiv.2509.16262>
62. Lim, D. C. L., Mat, H., & Yusoff, F. (2025). Centring the human: critical AI literacy, student engagement, and institutional implications for open universities in developing Asia. *AAOU Journal/AAOU Journal*, 1. <https://doi.org/10.1108/aaouj-04-2025-0041>
63. Ma, Y., Yufang, S., Ming-da, L., Zhang, Y., Chai, W., Huang, A., & Zhao, X. (2025). Preparing Students for an AI-Driven World: Generative AI and Curriculum Reform in Higher Education. *Frontiers of Digital Education.*, 2(4). <https://doi.org/10.1007/s44366-025-0067-6>
64. Majumder, C. (2019). SWAYAM: The Dream Initiative of India and its uses in Education. *International Journal of Trend in Scientific Research and Development*, 57. <https://doi.org/10.31142/ijtsrd21617>
65. Malik, V., & Hooda, M. (2023). MOOCs Revamping Indian Higher Education: Escalating Access, Equity, and Quality. *Journal of Higher Education Theory and Practice*, 23(12). <https://doi.org/10.33423/jhetp.v23i12.6238>
66. Massive Open Online Courses - Current Practice and Future Trends. (2023). In *IntechOpen eBooks*. IntechOpen. <https://doi.org/10.5772/intechopen.1001518>
67. Megahed, F. M., Chen, Y., Ferris, J. A., Resatar, C., Ross, K. W., Lee, Y., & Jones-Farmer, L. A. (2024). ChatISA: A Prompt-Engineered Chatbot for Coding, Project Management,
68. Interview and Exam Preparation Activities. *arXiv* (Cornell University). <https://doi.org/10.48550/arxiv.2407.15010>
69. Mumtaz, S., Carmichael, J., Weiß, M., & Nimon-Peters, A. (2024). Ethical use of artificial intelligence based tools in higher education: are future business leaders ready? *Education and Information Technologies*. <https://doi.org/10.1007/s10639-024-13099-8>
70. Murray, D., & Williams, K. (2023). Exploring business students' views of the use of generative AI in assignment writing. *ASCILITE Publications*, 167. <https://doi.org/10.14742/apubs.2023.662>
71. Nayak, S. R., Kant, N., & Anjali, K. (2020). Strategy of using ICT in ODL to disseminate higher education in tribal communities: a case of MP, India. *AAOU Journal/AAOU Journal*, 15(2), 189. <https://doi.org/10.1108/aaouj-05-2020-0029>
72. Ngoasong, M. Z. (2021). Curriculum Adaptation for Blended Learning in Resource-Scarce Contexts. *Organizational Behavior Teaching Review*, 46(4), 622. <https://doi.org/10.1177/10525629211047168>
73. Ossai, A. G., Asabor, M. B., Oduma, J. O., & Oseji, M. N. (2025). Reshaping management education for a globalized world. *Frontiers in Education*, 10. <https://doi.org/10.3389/feduc.2025.1614737>
74. Perera, P., & Lankathilake, M. (2023). Preparing to Revolutionize Education with the Multi-Model GenAI Tool Google Gemini? A Journey towards Effective Policy Making. *Journal of Advances in Education and Philosophy*, 7(8), 246. <https://doi.org/10.36348/jaep.2023.v07i08.001>
75. Plata, S. M., Guzman, M. A. D., & Quesada, A. (2023). Emerging Research and Policy Themes on Academic Integrity in the Age of Chat GPT and Generative AI. *Asian Journal of University Education*, 19(4), 743. <https://doi.org/10.24191/ajue.v19i4.24697>

76. Prajapat, S., Yadav, R. N., Raikwar, S., Soni, P., & Bhurre, S. (2024). Information Communication Technology (ICT) Tools for Online Learning Environments (OLE) Towards Quality Higher Education with NEP-2020. In Lecture notes in networks and systems (p. 111). Springer International Publishing. https://doi.org/10.1007/978-3-031-74443-3_6
77. Ranjan, P. (2020). Is Blended Learning Better than Online Learning for B.Ed Students? *Journal of Learning for Development*, 7(3), 349. <https://doi.org/10.56059/jl4d.v7i3.412>
78. Rashid, S., Malik, S., & Ghauri, F. (2025). The Active Learning–GenAI Synergy Framework: Ethical Integration of Generative AI in EFL/ESL Writing in Resource-Constrained Contexts. *F1000Research*, 14, 1210. <https://doi.org/10.12688/f1000research.171435.1>
79. Razi, A., Bouzoubaa, L., Pessianzadeh, A., Seberger, J. S., & Rezapour, R. (2024). Not a Swiss Army Knife: Academics' Perceptions of Trade-Offs Around
80. Generative Artificial Intelligence Use. *arXiv* (Cornell University). <https://doi.org/10.48550/arxiv.2405.00995>
81. Robinson, M., Agogué, M., & Fiset, J. (2023). Weathering the (Covid-19) Storm: Insights from Business School Instructors on Integrating Experiential Learning into Online Courses at the Outset of the Pandemic (p. 159). https://doi.org/10.1007/978-3-031-17841-2_8
82. Salhab, R., & Aboushi, M. M. (2025). Influence of AI literacy and 21st-century skills on the acceptance of generative artificial intelligence among college students. *Frontiers in Education*, 10. <https://doi.org/10.3389/feduc.2025.1640212>
83. Salinas-Navarro, D. E., Silva-Ovando, A. C. da, & Palma-Mendoza, J. A. (2024). Experiential Learning Labs for the Post-COVID-19 Pandemic Era. *Education Sciences*, 14(7), 707. <https://doi.org/10.3390/educsci14070707>
84. Santiago, T., & Gil, M. (2025). Preparing graduates for digital futures: critical insights from High-Tech internships in business administration. *Education and Information Technologies*. <https://doi.org/10.1007/s10639-025-13751-x>
85. Sasikumar, A., & Sunil, M. V. (2023). Students' Preference in Using Chatbots for Academic Writing. *Indian Journal of Science and Technology*, 16(36), 2912. <https://doi.org/10.17485/ijst/v16i36.1850>
86. Sharma, H., Jain, V., Mogaji, E., & Babbilid, A. S. (2024). Blended learning and augmented employability: a multi-stakeholder perspective of the micro-credentialing ecosystem in higher education. *International Journal of Educational Management*, 38(4), 1021. <https://doi.org/10.1108/ijem-12-2022-0497>
87. Sikijovska, S. (2025). Exploring the Landscape of AI and LLMs: Familiarity, Usage, and Education Gaps at a Slovenian Hei. *Management*, 20(1), 23. <https://doi.org/10.26493/1854-4231.20.23-29>
88. Singh, A. K. (2024). IMPACT OF GENERATIVE AI ON EDUCATIONAL SECTOR. *INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT*, 8(4), 1. <https://doi.org/10.55041/ijjsrem30724>
89. Singh, A., & Kakkar, K. B. (2023). Program inclusive, credit-based SWAYAM MOOCs in higher educational institutions of India. *International Journal of Educational Development*, 97, 102727. <https://doi.org/10.1016/j.ijedudev.2023.102727>
90. Singh, M., Adebayo, S. O., Saini, M., & Singh, J. (2021). Indian government E-learning initiatives in response to COVID-19 crisis: A case study on online learning in Indian higher education system. *Education and Information Technologies*, 26(6), 7569. <https://doi.org/10.1007/s10639-021-10585-1>
91. Singh, R. G., & Ngai, C. S. B. (2024). Top-ranked U.S. and U.K.'s universities' first responses to GenAI: key themes, emotions, and pedagogical implications for teaching and learning. *Discover Education*, 3(1). <https://doi.org/10.1007/s44217-024-00211-w>
92. Singh, R. K., & Singh, A. (2024). Building Sustainable Digital Education in India: Transformation through Equity, Inclusion and Accessibility. *Soshum Jurnal Sosial Dan Humaniora*, 14(1), 54. <https://doi.org/10.31940/soshum.v14i1.54-62>

93. Smith, D. P., Sokoya, D., Moore, S., Okonkwo, C., Boyd, C., Lacey, M., & Francis, N. J. (2024). Embedding Generative AI as a digital capability into a year-long MSc skills program. Research Square (Research Square). <https://doi.org/10.21203/rs.3.rs-5204546/v1>
94. Sözler, S. (2023). Açık ve Uzaktan İngilizce Öğretim Modelerinin Yapısı: Bir Devam Çalışması 2018-2023. DergiPark (Istanbul University). <https://dergipark.org.tr/tr/pub/higheredusci/issue/84450/1364045>
95. Subaveerapandian, A., & Ahamed, F. A. (2022). Awareness and usage of SWAYAM course among library and information science students a survey. arXiv (Cornell University). <https://doi.org/10.48550/arxiv.2210.07832>
96. T, S., Justin. (2025). Exploring Perceptions of Generative AI on Study Abroad Programming. School for International Training Digital Collections (School for International Training). <https://digitalcollections.sit.edu/capstones/3349>
97. Tan, M. J. T., & Maravilla, N. M. A. T. (2024). Unpopular Opinion: Generative Artificial Intelligence Is Not Eroding
98. Academic Integrity. arXiv (Cornell University). <https://doi.org/10.48550/arxiv.2407.19088>
99. Tripathi, D., & Tandon, S. (2023). Unlocking Growth: Exploring Senior Management Programme's Learner Experiences in India's Blended Learning Landscape. In IntechOpen eBooks. IntechOpen. <https://doi.org/10.5772/intechopen.1003640>
100. Tzirides, A. O., Zapata, G. C., Kastania, N. P., Saini, A. K., Castro, V., Ismael, S. A., You, Y., Santos, T. A. dos, Searsmith, D., O'Brien, C., Cope, B., & Kalantzis, M. (2024). Combining human and artificial intelligence for enhanced AI literacy in higher education. Computers and Education Open, 6, 100184. <https://doi.org/10.1016/j.caeo.2024.100184>
101. Varma, A., Patel, P., Malik, A., & Mishra, S. K. (2024). Special Issue: Managing People, Markets, and Businesses in the New India. Asian Business & Management, 23(2), 165. <https://doi.org/10.1057/s41291-024-00275-4>
102. Walter, Y. (2024). Embracing the future of Artificial Intelligence in the classroom: the relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, 21(1). <https://doi.org/10.1186/s41239-024-00448-3>
103. Yusuf, A., Pervin, N., & Román-González, Marcos. (2024). Generative AI and the future of higher education: a threat to academic integrity or reformation? Evidence from multicultural perspectives. International Journal of Educational Technology in Higher Education, 21(1). <https://doi.org/10.1186/s41239-024-00453-6>
104. Zhou, X., Zhang, J., & Chan, C. (2024). Unveiling Students' Experiences and Perceptions of Artificial Intelligence Usage in Higher Education. Journal of University Teaching and Learning Practice, 21(6). <https://doi.org/10.53761/xzjprb23>